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Abstract. The Hamiltonian quantum theory of the damped harmonic oscillator is investi- 
gated by using an explicitly time-dependent Hamiltonian including a commutative stochas- 
tic force. The propagator is computed and shown to describe an inhomogenous quantum 
dynamical semigroup evolution on the Banach cone of density matrices. The moments 
tend to the thermal equilibrium values independently of the initial conditions, when time 
tends to infinity and some rescaling procedure is performed. With respect to the rescaling 
neither the Heisenberg nor the Schrodinger picture exists. Furthermore the energy 
dissipates below the zero-point energy in violation of the Heisenberg uncertainty relation. 

1. Introduction 

A phenomenological description of dissipative quantum systems has been achieved 
by the discovery of an explicitly time-dependent Hamilton function H 1 ( ( )  by Bateman 
(1931), Caldirola (1941), Kanai (1948), Havas (1957) and others. This Hamiltonian 
defines the flow corresponding to the Langevin equation 

mx+myi +av/ax = ( ( t ) ,  (1.1) 

where ( ( t )  denotes the fluctuating force due to the thermal environment of the system, 
and 

(1.2) ~ ~ ( 6 )  = (1/2m)p2 e-"'+(v(x, t ) - x t ( t ) )  e"'. 

Whereas the Hamiltonian is only of phenomenological origin, the Langevin equation 
has been derived, also in the quantum case, from microscopic models. For instance 
Ford e t a /  (1965) (see also Benguria and Kac 1981) proved (1.1) to hold for a quantum 
harmonic oscillator with frequency wo if ( is the Ford-Kac-Mazur quantum stochastic 
process, i.e. 

hw m 

i ({[( t ) ,  t ( t ' ) } )  = my I dw hw cos w ( t  - t ' )  coth - 
T o  2kT' (1.3) 

[6( t ) ,  ( ( t ' ) ]  = iyh(a/at - a/at ')s(t - t ' ) ,  (1.4) 

and the operator process ( ( t )  is gaussian. Here T is the temperature of the reservoir 
and ( e )  is the quantum statistical expectation value. Other models (von Waldenfels 
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1981) with different approximations lead to (1 -1) with the gaussian quantum stochastic 
process 

(1.5) 

[ t ( t ) ,  t( t’)l-  - 0, (1.6) 

or equivalently to the master equation of Haake (1973). The quantum friction called 
model for (1.1) uses the Hamiltonian (1.2) but with a commutative, c-number stochastic 
force correlated in case of the harmonic oscillator as (1.5). 

Concerning the quantum friction approach to dissipative systems, most of the 
considerably many publications have been reviewed by Hasse (1978), Messer (1979) 
and Dekker (1981). The model has been studied first by neglecting the stochastic 
force. It was quickly recognised that this approximation leads to unphysical 
consequences like the violation of the Heisenberg uncertainty relation (see e.g. Brittin 
1950, Havas 1956, Kerner 1958). The significance of the (commutative) stochastic 
force is therefore regarded to consist in restoring the correct Heisenberg uncertainty 
relation. Senitzky (1960) emphasises this role of the stochastic force for the Heisenberg 
equation of motion ( l . l ) ,  whereas Stevens (1958, 1961) and Stevens and Josephson 
(1959) (see also Stevens 1980) and Svin’in (1976) stress the importance of the 
stochastic force in the quantum friction model (1.2). 

Besides stating the propagator in 98 2 and 3 and studying its long-time asymptotic 
properties in 9 4, we show in $ 5  that even taking proper account of the commutative 
stochastic force in a quantum friction phenomenological model leads to inconsistencies. 

&{[( t ) ,  ( ( t ’ ) } )  = Awomy coth(hwo/2kT)S(t - r ‘ ) ,  

2. The propagator for the damped harmonic oscillator with a stochastic force 

We consider in the following the quantum damped harmonic oscillator in one 
dimension in the framework of the quantum friction Hamiltonian (1.2) with 

(2.1) 1 2 2  V ( x )  = zmwox 

and the stochastic force 5 specified as follows: 5 is induced by a commutative (gaussian 
and markovian) Wiener process, i.e. 5 is a gaussian, &correlated c-number ‘white 
noise’, 

where D o ( t )  is a gaussian measure on the set r, of trajectories of the stochastic force, 
T t  = { [ ( T ) ,  T E [0, t ] } .  In particular, the average of the generating functional for arbitrary 
A ( t )  gives 

The stochastic Hamiltonian (1.2) determines the evolution for the stochastic density 
matrices by the von Neumann equation 

b&) = (l / iWIHt(t) ,  p&)l. (2.4) 

We want to describe the evolution by a propagator A, on the density matrices 
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pt = ( p r ( t ) ) ,  e.g. in the position representation 

pt(x, i) = I A,(x,  fix', 2’)po(x’, 2’)  dx’ d2’. (2.5) 

In the absence of the stochastic force this propagator has been found by Papadopoulos 
(1974). The functional integral representation of the propagator reads 

) I  (2.6) 
1 2 2  l i  

-?mwo(x -,+‘)I+- -4 e2“(x -2)’ d r  
2 h  

by using (2.3). This time evolution is equivalent to the master equation 

it = (l/ih)[H,(O), ptI- (s/2h2) eZv‘[X1, [;, prII, (2.7) 

which defines a completely positive inhomogeneous quantum dynamical semigroup 
(see e.g. Lindblad 1976a, Davies 1974) on the density matrices. Here position and 
momentum operators are indicated explicitly by X1 and 6. The representation of 
general quantum dynamical semigroups by path integrals was investigated by Alicki 
et a1 (1981). The master equation (2.7) is equivalent to the quantum Fokker-Planck 
equation in the Glauber coherent state representation found by Brinati and Mizrahi 
(1980). 

3. Representation of the propagator by Svin’in’s method 

In order to obtain a more convenient representation of the evolution operator A, we 
change the variables in the path integral representation (2.6) according to Svin’in’s 
(1976) transformation 

Y = x - v ( t ) ,  1 = i - q ( t ) ,  (3.1) 

;i +y7j +w:q  = [ ( t ) / m  (3.2) 

where 

with initial conditions 77 (0) = <(0) = 0. It follows immediately that 

~ t ( y , ~ y ’ , ~ ‘ ) =  J ~ o ( ~ e x p ( - k m  e l ‘ ( y - ~ ) 7 j ) ~ r ( y + t l , 1 + t l l Y ’ , 1 ’ ) ,  (3.3) 

(3.4) 
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V, = T exp( - lor H,  (0) dT) (3.5) 

denotes the propagator without stochastic force, which was derived using path integrals 
by Papadopoulos (1974). 

For given y, y', 1, 7' and t the function 

G(q,  ri)=exp[-(i/h)m e"(y-Y)rjlK(y+q, Y + d y ' ,  Y') (3.6) 

is defined on T, = { [ ( T ) ;  T E [0, t ]} .  We introduce the one-to-one map T from the set 
Tr to the set Er of all solutions of the equation (3.2) with the initial conditions 
q(0)=7j(O)=Oby T [ [ ] ( T ) = ~ ( T ) .  IntroducingasecondmapF:Zt+R2byF[{q(T), T E  

[0, t]}] = ( q ( t ) ,  7j ( t ) ) ,  one can define 

P: rt -+ R', P = F Q T  (3.7) 
and therefore 

G(7797j) = G(P[SI). (3.8) 

Let Zr(dq, d7j) denote the set of trajectories {q ( T ) ,  T E [0, t ] ,  q ( t )  E [q, q + dq], 7j ( t )  E 

[7j, ;I +d7j]}. A probability distribution Wt(q, 7j) is then defined by 

Wr(7,7j) dq d7j =Do(T-'Pr(dq, drj)1) 

= Do(P-'([t7, 9 + dq I X [ T j ,  7j + d7j I)) 
=: DO(P-'(dq d7j)). (3.9) 

Wt(q, 7j) fulfils the Fokker-Planck equation for the harmonic oscillator with initial 
conditions 

(3.10) 

and its manifest form can be found in Chandrasekhar (1943) or Wang and Uhlenbeck 
(1945). Using (3 .3H3.9)  we obtain 

Wo(a, a;)  = S(a)  a(&), 

Arb, Y I Y ' 9  Y') 

= I,, NOG  SI) 

(3.11) 

For further discussions it is useful to state the following operator form of (3.11): 

Atp = dq d e  Wt(q, 7j) exp[(ilh)(qp* - m e"7jf)l 

x VrpVT exp[-(i/h)(qp* - m eYr7jf)l, 

which equivalently defines the semigroup (2.7). 

(3.12) 
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4. Approach to equilibrium 

The large-time behaviour of the expectation values of observables A(x*), which depend 
only on the position operator 2, is seen by investigating the propagator Ar(y, y 1 y ’, jJ‘) 
for large t. From (3.11) and Chandrasekhar (1943) (or Svin’in 1976): 

where O2 =wg - y2/4 is taken here to be positive (weak damping case). Using the 
propagator K ,  of Papadopoulos (1974) in (4.1) and performing the gaussian integration 
with respect to 7, we arrive at 

MY, Y I Y’, 8’) 
= J&N, exp[A(t)(y” - y’2)](&u,)-’ 

for some A(t)  and the normalisation factor Nt. In the limit t -* CO the expression (4.4) 
becomes 

y ~ y ’ ,  7’) = 6(y’-p’)(J-u,)-’ exp(-y2/u2). (4.5) 

Since (see e.g. Svin’in 1976) 

q = h o m y  coth(hwo/2kT), (4.6) 

where T denotes the temperature of the surrounding reservoir, the expectation values 
of A(2) tend to their equilibrium values for t -* 00, for any initial conditions, i.e. this 
convergence is independent of the chosen initial preparation. 

For observables which depend only on the canonical momentum 8, A ( @ ) ,  the 
mean values can be computed, using the Fourier transform 

;i,(p,p1y’,jJf)=(2~A)-l 1 dy d j J e x p ( - ~ p ( y - j J ) ) A , ( y . j J / y ’ , ~ ’ ) .  (4.7) 

For large t, similar to ( 4 3 ,  we obtain the equilibrium values expressed in the rescaled 
kinetical momentum pkin = p e-”’ independently of the initial conditions. 

5. Non-existence of dynamical maps 

The evolution of the expectation values for observables A(2) or A(@) is given by 

wp(AG))(t) = Tr(A(x*)b) ,  (5.1) 
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for the initial state p .  The reason to use the rescaled momentum is the result of 04: 

According to the principles of quantum mechanics the evolution (5.1), (5.2) ought to 
be expressed by a family of unity preserving, positive linear maps ATZ, on the algebra 
of observables with S I ( A ( f ) )  = A ( i )  and =,(A($)) =A(e-Y'$). Then ATSr defines the 
evolution in the Heisenberg picture and ;?Al in the Schrodinger picture. Clearly 8, 
cannot be an automorphism and an extension of 3, to the non-commutative part of 
the algebra is ambiguous. Moreover, even on observables which are sums A (2) + B (e) 
the map ATE, cannot be positive. In (3.12) let us denote AT = UrQr with UrA = VTAV, 
acting on the observable A ;  then at=, should be positive. Choosing 

A = $ 2 + a 2 x 2 - c y h  (5.4) 

for a: E R to be specified later, we obtain 

( 5 . 5 )  

(5.6) 

(5.7) 

(5.8) 

Let cy > q / h y  = m a o  coth(hw0/2kT); then c,(O) = 0 but d,(O) < 0. There exists a T > 0 
such that c, ( T )  < 0. We choose a vector state pT being the projection on the vector 
$? defined by D,(T)$~  = 0. Consequently Tr(Q7ST(A)pT) < O ,  which concludes the 
proof, 

Of interest for physics is e.g. the energy observable 

2 2 - 1  (5.10) Z , ( E  - E ~ )  = (1/2m)fi2 e-2yr ++muox  ghwo 

which corresponds to the choice cy = muo=:  a0 in (5.4).  If we consider as state of the 
oscillator the projection U T p o  on the pseudostationary ground state (Hasse 1975) 

c L o ( f )  = Vl$o(0) =Noexp[(ay-lin)f-(m/2h)(n+qiy) eY1x2], (5.11) 

(5.12) 
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(5.13) 

with A = coth(hwo/2kT) - 1 and 2Rto = T. Thus with this initial condition the mean 
energy dissipates below the zero-point energy if the temperature T of the bath is 
sufficiently low. This result implies immediately the invalidity of the Heisenberg 
uncertainty relation by taking the square of the sum and the square of the difference 
of the expectation values of kinetic and potential energy; thus 

(5.14) (Ax)2(to)(APkin)2(t0) = w,,(x*2)(to)wpo(p^2 e-2")(to) < h2/4 

for kT K hwo. 

6. Conclusions 

The considerations of 0 5 prove the non-existence of a family of dynamical maps, i.e. 
the non-existence of the Heisenberg and Schrodinger pictures, if we require that our 
model with friction-inbuilt Hamiltonian and a commutative stochastic force should 
describe the approach to equilibrium properly. Moreover, independent of this require- 
ment, we showed that for sufficiently low thermal energy k T  (compared with hwo) 
there exists a time to where for some initial state the mean energy is less than the 
zero-point energy, i.e. w,,(E)(to) < hwo/2 and the uncertainty relation does not hold, 
i.e. Ax (to)Apkin(to) < h/2. This violation of the principles of quantum mechanics might 
be caused by the non-quantum nature of the stochastic force or by the artificial 
frictional Hamiltonian H,(O). Usually in the markovian approximation dissipative 
quantum systems are described by quantum dynamical semigroups which arise from 
microscopic models in the weak coupling or singular coupling limit (see e.g. Davis 
(1976) and Gorini er a1 (1978) as reviews). An example of this description of the 
Brownian motion of a quadratic system is given by Lindblad (1976b). If the stochastic 
force is treated as a quantised noise, then Gorini and Kossakowski (1976) showed 
rigorously for an N-level system that damping and pumping is described together by 
the quantum stochastic force and there is no need for the artificial Hamiltonian H,(O). 
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